Answers to the Exam of Symmetry in Physics of February 4, 2011

Exercise 1

Consider the dihedral group D_{3} : $\operatorname{gp}\{c, b\}$ with $c^{3}=b^{2}=(b c)^{2}=e$.
(a) Show that the cyclic group C_{3} forms an invariant subgroup of D_{3}.
$C_{3}=\left\{e, c, c^{2}\right\}$ is a subgroup because it forms a subset of D_{3} that is closed under the group multiplication. It is invariant since under conjugation $b c b^{-1}=c^{2},(b c) c(b c)^{-1}=c^{2},\left(b c^{2}\right) c\left(b c^{2}\right)^{-1}=c^{2}$, hence $\forall h \in C_{3}, \forall g \in D_{3}: g h g^{-1} \in C_{3}$.
(b) Show that $D_{3} / C_{3} \cong C_{2}$.

The cosets of C_{3} in D_{3} : e $C_{3}=c C_{3}=c^{2} C_{3}$ and $b C_{3}=b c C_{3}=b c^{2} C_{3}$. These two cosets form a group of order 2 , through the standard multiplication of cosets: $g C_{3} * h C_{3}=g h C_{3}, \forall g, h \in D_{3}$, e.g. $b C_{3} *$ $b C_{3}=b^{2} C_{3}=C_{3}$. The group ($\left\{e C_{3}, b C_{3}\right\} ; *$) is isomorphic to C_{2} upon equating $e C_{3}$ with $e \in C_{2}$ and $b C_{3}$ with $c \in C_{2}$.
(c) Construct the character tables of C_{2}, C_{3}, and D_{3}.
C_{2} and C_{3} are Abelian, hence they have 2 and 3 classes respectively. Therefore, C_{2} has two and C_{3} three irreps. Using orthonormality of characters and that the character of a 1-dimensional irrep forms a homomorphism, together with the trivial irrep, one deduces:

$$
\begin{array}{c|cc}
C_{2} & (e) & (c) \\
\hline D^{(1)} & 1 & 1 \\
D^{(2)} & 1 & -1
\end{array}
$$

C_{3}	(e)	(c)	$\left(c^{2}\right)$
$D^{(1)}$	1	1	1
$D^{(2)}$	1	ω	ω^{2}
$D^{(3)}$	1	ω^{2}	ω

Here $\omega=\exp (2 \pi i / 3)$. Idem for the non-Abelian group D_{3} which also has three classes and irreps (explicitly done in the lecture notes):

D_{3}	(e)	(c)	(b)
$D^{(1)}$	1	1	1
$D^{(2)}$	1	1	-1
$D^{(3)}$	2	-1	0

(d) Show which irreps of C_{2} can be lifted to irreps of D_{3} through $D^{G}(g):=$ $D^{G / N}(g N)$.

From 1b we know that $N=C_{3}$, equating $e C_{3}=\left\{e, c, c^{2}\right\}$ with $e \in C_{2}$ and $b C_{3}=\left\{b, b c, b c^{2}\right\}$ with $c \in C_{2}$. In order for $D^{D_{3}}(g)=$ $D^{D_{3} / C_{3}}\left(g C_{3}\right)$ to hold, $D^{D_{3}}(e)=D^{D_{3}}(c)=D^{D_{3}}\left(c^{2}\right)=D^{C_{2}}(e)=1$ should hold and also $D^{D_{3}}(b)=D^{D_{3}}(b c)=D^{D_{3}}\left(b c^{2}\right)=D^{C_{2}}(c)=$ ± 1, which is true for the two 1-dimensional irreps of D_{3}. Hence, both irreps of C_{2} can be lifted to irreps of D_{3}.
(e) Determine the Clebsch-Gordan series of the direct product rep $D^{(3)} \otimes D^{(3)}$ of D_{3}, where $D^{(3)}$ denotes the two-dimensional irrep of D_{3}.

Find the a_{μ} in $D^{(3)} \otimes D^{(3)} \sim \sum_{\mu=1}^{3} a_{\mu} D^{(\mu)}$.
The characters of $D^{(3)} \otimes D^{(3)}$:

$$
\begin{array}{c|ccc}
D_{3} & (e) & (c) & (b) \\
\hline D^{(3)} \otimes D^{(3)} & 4 & 1 & 0
\end{array}
$$

Direct inspection shows $D^{(3)} \otimes D^{(3)} \sim D^{(1)} \oplus D^{(2)} \oplus D^{(3)}$. Alternatively one can calculate $a_{\mu}=\left\langle\chi^{(\mu)}, \chi^{(3) \otimes(3)}\right\rangle$, e.g. $\left\langle\chi^{(3)}, \chi^{(3) \otimes(3)}\right\rangle=$ $(1 \cdot 2 \cdot 4+2 \cdot-1 \cdot 1+0) / 6=1$.

Consider a molecule with D_{3} symmetry. By application of an external magnetic field the symmetry is broken to a C_{3} symmetry.
(f) Decompose the irreps of D_{3} into those of C_{3} using the character tables.

Using the character table (direct inspection or orthonormality) and $\omega+\omega^{2}=-1$ one finds:

$$
\begin{aligned}
D_{D_{3}}^{(1)} & =D_{C_{3}}^{(1)} \\
D_{D_{3}}^{(2)} & =D_{C_{3}}^{(1)} \\
D_{D_{3}}^{(3)} & =D_{C_{3}}^{(2)} \oplus D_{C_{3}}^{(3)}
\end{aligned}
$$

(g) Explain what the implications of the symmetry breaking are for the degeneracy of the energy levels of the molecule.

The degeneracy of the states transforming according to the 2dimensional irrep $D^{(3)}$ of D_{3} is generally lifted. After symmetry
breaking the 2 -dimensional invariant subspace splits into two 1 dimensional invariant subspaces, that are not related by the C_{3} symmetry.

Exercise 2

(a) Explain what the concept of symmetry means in physics.

Symmetry is invariance under a set of operations. In physics these are operations that leave the physical system, such as a Hamiltonian, invariant.
(b) Explain the role of representations in physics.

Physical systems are described by quantities such as vectors, tensors, states/wave functions, or operators. These quantities transform in certain ways under the symmetry operations, which means that they transform according to certain representations of a symmetry group.
(c) Under which symmetry transformations is the Hamiltonian $H=\vec{p}^{2} / 2 m+$ $V(|\vec{r}|)$ invariant?
\vec{p} and \vec{r} are vectors, so under rotations they transform according to the vector representation D^{V} of $S O(3)$, but \vec{p}^{2} and $|\vec{r}|=\sqrt{\vec{r}^{2}}$ are invariant under rotations. Also under reflections H is invariant, hence it is $O(3)$ invariant. Under translations the potential is not invariant.
(d) Show that $[H, U(g)]=0$ implies that transformed states $U(g) \psi$ are degenerate in energy with the state ψ.

$$
\text { If } H \psi=E \psi \text {, then }[H, U(g)] \psi=0 \text { implies } H(U \psi)=E(U \psi) \text {. }
$$

(e) Describe under which representations of $O(3)$ the following quantities transform: 1) an electric field \vec{E}; 2) a magnetic field \vec{B}; 3) $\vec{E} \cdot \vec{B}$; and 4) $\vec{E} \times \vec{B}$.

1) An electric field \vec{E} transforms as a vector under $O(3): D^{V}$
2) A magnetic field \vec{B} transforms as an axial vector under $O(3)$: D^{A}.
3) The inner product of a vector and an axial vector such as $\vec{E} \cdot \vec{B}$ transforms as a pseudo-scalar, which means it transforms trivially under rotations and picks up a minus sign under reflections: the irrep given by the determinant of the defining rep.
4) The outer product of a vector and an axial vector such as $\vec{E} \times \vec{B}$ transforms as vector (recall the Poynting vector): D^{V}

Exercise 3

Consider the special linear group $S L(2, \mathrm{R})$ of real 2×2 matrices with determinant 1 and its Lie algebra $s l(2, \mathrm{R})$.
(a) Give an explicit representation of the generators $a_{i} \in \operatorname{sl}(2, \mathrm{R})$.
$\exp \left(t a_{i}\right) \in S L(2, \mathrm{R})$ implies $\operatorname{Tr} a_{i}=0$, which implies that a general element in the Lie algebra is of the form (with $a, b, c \in \mathrm{R}$):

$$
\left(\begin{array}{cc}
a & b \\
c & -a
\end{array}\right)
$$

Therefore an explicit representation of the generators is:

$$
a_{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad a_{2}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad a_{3}=\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right)
$$

(b) Determine the dimension of $\operatorname{sl}(2, \mathrm{R})$.

From 3a one sees the dimension is three.
(c) Determine the center of $S L(2, \mathrm{R})$ (it is allowed to assume the defining rep is an irrep).

Schur's lemma implies that the center of $S L(2, \mathrm{R})$ consists of matrices that are of the form:

$$
\left(\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right)
$$

For these matrices to be in $S L(2, \mathrm{R}), \lambda^{2}$ must be 1 . Hence, the center consists of the two matrices:

$$
\left(\begin{array}{cc}
\pm 1 & 0 \\
0 & \pm 1
\end{array}\right)
$$

(d) Show whether the map ϕ from the general linear group $G L(2, \mathrm{R})$ into $S L(2, \mathrm{R})$, given by $\phi(A)=A / \sqrt{\operatorname{det} A}$, is a homomorphism or not.

$$
\phi(A) \phi(B)=\frac{A}{\sqrt{\operatorname{det} A}} \frac{B}{\sqrt{\operatorname{det} B}}=\frac{A B}{\sqrt{\operatorname{det} A B}}=\phi(A B)
$$

(e) To which group is the factor group $G L(2, \mathrm{R}) / S L(2, R)$ isomorphic? $S L(2, \mathrm{R})$ is the kernel of $\operatorname{det}: G L(2, \mathrm{R}) \rightarrow \mathrm{R} \backslash\{0\}, A \mapsto \operatorname{det} A$. Hence, the factor group $G L(2, \mathrm{R}) / S L(2, R) \cong(\mathrm{R} \backslash\{0\} ; \times)$.
(f) Show whether $S O(2)$ is an invariant subgroup of $S L(2, \mathrm{R})$ or not.

If $A O A^{-1} \in S O(2), \forall O \in S O(2), \forall A \in S L(2, \mathrm{R})$, then $S O(2)$ would be an invariant subgroup. But in general $\left(A O A^{-1}\right)^{T}\left(A O A^{-1}\right) \neq 1$ because $A^{T} A \neq 1$.

