Answers to the Exam of Symmetry in Physics of February 4, 2011

Exercise 1

Consider the dihedral group D_3 : gp{c, b} with $c^3 = b^2 = (bc)^2 = e$.

(a) Show that the cyclic group C_3 forms an invariant subgroup of D_3 .

 $C_3 = \{e, c, c^2\}$ is a subgroup because it forms a subset of D_3 that is closed under the group multiplication. It is invariant since under conjugation $bcb^{-1} = c^2$, $(bc)c(bc)^{-1} = c^2$, $(bc^2)c(bc^2)^{-1} = c^2$, hence $\forall h \in C_3, \forall g \in D_3 : ghg^{-1} \in C_3$.

(b) Show that $D_3/C_3 \cong C_2$.

The cosets of C_3 in D_3 : $eC_3 = cC_3 = c^2C_3$ and $bC_3 = bcC_3 = bc^2C_3$. These two cosets form a group of order 2, through the standard multiplication of cosets: $gC_3 * hC_3 = ghC_3, \forall g, h \in D_3$, e.g. $bC_3 * bC_3 = b^2C_3 = C_3$. The group ($\{eC_3, bC_3\}; *$) is isomorphic to C_2 upon equating eC_3 with $e \in C_2$ and bC_3 with $c \in C_2$.

(c) Construct the character tables of C_2, C_3 , and D_3 .

 C_2 and C_3 are Abelian, hence they have 2 and 3 classes respectively. Therefore, C_2 has two and C_3 three irreps. Using orthonormality of characters and that the character of a 1-dimensional irrep forms a homomorphism, together with the trivial irrep, one deduces:

C_2	(ρ)	(c)	C_3	(e)	(c)	(c^2)
			$D^{(1)}$			
$D^{(1)} \\ D^{(2)}$	1	1	$D^{(2)}$	1	ω	ω^2
$D^{(2)}$		-1	$D^{(3)}$			

Here $\omega = \exp(2\pi i/3)$. Idem for the non-Abelian group D_3 which also has three classes and irreps (explicitly done in the lecture notes):

D_3	(e)	(c)	(b)
$D^{(1)}$	1	1	1
$D^{(2)}$	1	1	-1
$D^{(3)}$	2	-1	0

(d) Show which irreps of C_2 can be lifted to irreps of D_3 through $D^G(g) := D^{G/N}(gN)$.

From 1b we know that $N = C_3$, equating $eC_3 = \{e, c, c^2\}$ with $e \in C_2$ and $bC_3 = \{b, bc, bc^2\}$ with $c \in C_2$. In order for $D^{D_3}(g) = D^{D_3/C_3}(gC_3)$ to hold, $D^{D_3}(e) = D^{D_3}(c) = D^{D_3}(c^2) = D^{C_2}(e) = 1$ should hold and also $D^{D_3}(b) = D^{D_3}(bc) = D^{D_3}(bc^2) = D^{C_2}(c) = \pm 1$, which is true for the two 1-dimensional irreps of D_3 . Hence, both irreps of C_2 can be lifted to irreps of D_3 .

(e) Determine the Clebsch-Gordan series of the direct product rep $D^{(3)} \otimes D^{(3)}$ of D_3 , where $D^{(3)}$ denotes the two-dimensional irrep of D_3 .

Find the a_{μ} in $D^{(3)} \otimes D^{(3)} \sim \sum_{\mu=1}^{3} a_{\mu} D^{(\mu)}$. The characters of $D^{(3)} \otimes D^{(3)}$:

$$\begin{array}{c|ccc} D_3 & (e) & (c) & (b) \\ \hline D^{(3)} \otimes D^{(3)} & 4 & 1 & 0 \\ \end{array}$$

Direct inspection shows $D^{(3)} \otimes D^{(3)} \sim D^{(1)} \oplus D^{(2)} \oplus D^{(3)}$. Alternatively one can calculate $a_{\mu} = \langle \chi^{(\mu)}, \chi^{(3)\otimes(3)} \rangle$, e.g. $\langle \chi^{(3)}, \chi^{(3)\otimes(3)} \rangle = (1 \cdot 2 \cdot 4 + 2 \cdot -1 \cdot 1 + 0)/6 = 1$.

Consider a molecule with D_3 symmetry. By application of an external magnetic field the symmetry is broken to a C_3 symmetry.

(f) Decompose the irreps of D_3 into those of C_3 using the character tables.

Using the character table (direct inspection or orthonormality) and $\omega + \omega^2 = -1$ one finds:

$$D_{D_3}^{(1)} = D_{C_3}^{(1)}$$

$$D_{D_3}^{(2)} = D_{C_3}^{(1)}$$

$$D_{D_3}^{(3)} = D_{C_3}^{(2)} \oplus D_{C_3}^{(3)}$$

(g) Explain what the implications of the symmetry breaking are for the degeneracy of the energy levels of the molecule.

The degeneracy of the states transforming according to the 2dimensional irrep $D^{(3)}$ of D_3 is generally lifted. After symmetry breaking the 2-dimensional invariant subspace splits into two 1dimensional invariant subspaces, that are not related by the C_3 symmetry.

Exercise 2

(a) Explain what the concept of symmetry means in physics.

Symmetry is invariance under a set of operations. In physics these are operations that leave the physical system, such as a Hamiltonian, invariant.

(b) Explain the role of representations in physics.

Physical systems are described by quantities such as vectors, tensors, states/wave functions, or operators. These quantities transform in certain ways under the symmetry operations, which means that they transform according to certain representations of a symmetry group.

(c) Under which symmetry transformations is the Hamiltonian $H = \vec{p}^{2}/2m + V(|\vec{r}|)$ invariant?

 \vec{p} and \vec{r} are vectors, so under rotations they transform according to the vector representation D^V of SO(3), but \vec{p}^2 and $|\vec{r}| = \sqrt{\vec{r}^2}$ are invariant under rotations. Also under reflections H is invariant, hence it is O(3) invariant. Under translations the potential is not invariant.

(d) Show that [H, U(g)] = 0 implies that transformed states $U(g)\psi$ are degenerate in energy with the state ψ .

If $H\psi = E\psi$, then $[H, U(g)]\psi = 0$ implies $H(U\psi) = E(U\psi)$.

(e) Describe under which representations of O(3) the following quantities transform: 1) an electric field \vec{E} ; 2) a magnetic field \vec{B} ; 3) $\vec{E} \cdot \vec{B}$; and 4) $\vec{E} \times \vec{B}$.

1) An electric field \vec{E} transforms as a vector under O(3): D^V

2) A magnetic field \vec{B} transforms as an axial vector under O(3): D^A .

3) The inner product of a vector and an axial vector such as $\vec{E} \cdot \vec{B}$ transforms as a pseudo-scalar, which means it transforms trivially under rotations and picks up a minus sign under reflections: the irrep given by the determinant of the defining rep.

4) The outer product of a vector and an axial vector such as $\vec{E} \times \vec{B}$ transforms as vector (recall the Poynting vector): D^V

Exercise 3

Consider the special linear group $SL(2, \mathsf{R})$ of real 2×2 matrices with determinant 1 and its Lie algebra $sl(2, \mathsf{R})$.

(a) Give an explicit representation of the generators $a_i \in sl(2, \mathsf{R})$.

 $\exp(ta_i) \in SL(2, \mathbb{R})$ implies Tr $a_i = 0$, which implies that a general element in the Lie algebra is of the form (with $a, b, c \in \mathbb{R}$):

$$\left(\begin{array}{cc}a&b\\c&-a\end{array}\right)$$

Therefore an explicit representation of the generators is:

$$a_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad a_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad a_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

(b) Determine the dimension of $sl(2, \mathsf{R})$.

From 3a one sees the dimension is three.

(c) Determine the center of $SL(2, \mathsf{R})$ (it is allowed to assume the defining rep is an irrep).

Schur's lemma implies that the center of $SL(2, \mathsf{R})$ consists of matrices that are of the form:

$$\left(\begin{array}{cc}\lambda & 0\\ 0 & \lambda\end{array}\right)$$

For these matrices to be in $SL(2, \mathsf{R})$, λ^2 must be 1. Hence, the center consists of the two matrices:

$$\left(\begin{array}{cc} \pm 1 & 0 \\ 0 & \pm 1 \end{array}\right)$$

(d) Show whether the map ϕ from the general linear group $GL(2, \mathbb{R})$ into $SL(2, \mathbb{R})$, given by $\phi(A) = A/\sqrt{\det A}$, is a homomorphism or not.

$$\phi(A)\phi(B) = \frac{A}{\sqrt{\det A}} \frac{B}{\sqrt{\det B}} = \frac{AB}{\sqrt{\det AB}} = \phi(AB)$$

- (e) To which group is the factor group $GL(2, \mathsf{R})/SL(2, R)$ isomorphic? $SL(2, \mathsf{R})$ is the kernel of det: $GL(2, \mathsf{R}) \to \mathsf{R} \setminus \{0\}, A \mapsto \det A$. Hence, the factor group $GL(2, \mathsf{R})/SL(2, R) \cong (\mathsf{R} \setminus \{0\}; \times)$.
- (f) Show whether SO(2) is an invariant subgroup of $SL(2, \mathsf{R})$ or not.

If $AOA^{-1} \in SO(2)$, $\forall O \in SO(2)$, $\forall A \in SL(2, \mathbb{R})$, then SO(2) would be an invariant subgroup. But in general $(AOA^{-1})^T (AOA^{-1}) \neq \mathbf{1}$ because $A^TA \neq \mathbf{1}$.